Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 881: 163434, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37059144

ABSTRACT

This research investigates the effect of propionate-cultured sludge augmentation on methane (CH4) production from upflow anaerobic sludge blanket systems (UASB) treating fresh landfill leachate. In the study, both UASB reactors (UASB 1 and UASB 2) contained acclimatized seed sludge, and UASB 2 was augmented with propionate-cultured sludge. The organic loading rate (OLR) was varied between 120.6, 84.4, 48.2, and 12.0 gCOD/L·d. The experimental results indicated that the optimal OLR of UASB 1 (non-augmentation) was 48.2 gCOD/L·d, achieving the CH4 production of 4019 mL/d. Meanwhile, the optimal OLR of UASB 2 was 12.0 gCOD/L·d, achieving the CH4 yield of 6299 mL/d. The dominant bacterial community in the propionate-cultured sludge included the genera Methanothrix, Methanosaeta, Methanoculleus, Syntrophobacter, Smithella, Pelotomamulum, which are the VFA-degrading bacteria and methanogens responsible for unblocking the CH4 pathway bottleneck. Essentially, the novelty of this research lies in the use of propionate-cultured sludge to augment the UASB reactor in order to enhance CH4 production from fresh landfill leachate.


Subject(s)
Sewage , Water Pollutants, Chemical , Sewage/microbiology , Anaerobiosis , Propionates , Waste Disposal, Fluid/methods , Bioreactors , Bacteria/metabolism , Methane/metabolism
2.
Article in English | MEDLINE | ID: mdl-36899452

ABSTRACT

Occurrence of trimethoprim (TMP), recalcitrant antibiotic, and its adverse effect on ecosystem have been reported in several countries. The study aims to remove the TMP and its phytotoxicity via a UV/chlorine process, compared with chlorination and UV irradiation alone. Various treatment conditions including chlorine doses, pHs, and TMP concentrations was conducted with synthetic waters and effluent waters. The UV/chlorine process exhibited a synergistic effect on the TMP removal, compared with chlorination and UV irradiation alone. The UV/chlorine process was the most effective in removing TMP, followed by chlorination. The UV irradiation slightly affected the TMP removal (less than 5%). The UV/chlorine process completely removed TMP by 15 min contact time, while chlorination for 60 min could achieve 71% of TMP removal. The TMP removal fitted well with the pseudo first-order kinetics, and the rate constant (k') increased with higher chlorine doses, lower TMP concentrations and low pH. HO• was the major oxidant affecting the TMP removal and its degradation rate, compared with other reactive chlorine species (e.g., Cl•, OCl•). The TMP exposure increased the phytotoxicity by decreasing a germination rate of Lactuca sativa and Vigna radiata seeds. The use of UV/chlorine process could effectively detoxify the TMP, resulting in the phytotoxicity level of treated waters equivalent or lower than those of TMP-free effluent water. The detoxification level depended on the TMP removal, and it was about 0.43-0.56 times of TMP removal. The findings indicated the potential use of UV/chlorine process in removing TMP residual and its phytotoxicity.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine/analysis , Trimethoprim/toxicity , Ecosystem , Oxidation-Reduction , Water Purification/methods , Water Pollutants, Chemical/analysis , Halogenation , Ultraviolet Rays , Kinetics
3.
Water Res ; 230: 119568, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36621278

ABSTRACT

BACKGROUND: Trihalomethanes (THM), a major class of disinfection by-products, are widespread and are associated with adverse health effects. We conducted a global evaluation of current THM regulations and concentrations in drinking water. METHODS: We included 120 countries (∼7000 million inhabitants in 2016), representing 94% of the world population. We searched for country regulations and THM routine monitoring data using a questionnaire addressed to referent contacts. Scientific and gray literature was reviewed where contacts were not identified or declined participation. We obtained or estimated annual average THM concentrations, weighted to the population served when possible. RESULTS: Drinking water regulations were ascertained for 116/120 (97%) countries, with 89/116 (77%) including THM regulations. Routine monitoring was implemented in 47/89 (53%) of countries with THM regulations. THM data with a varying population coverage was obtained for 69/120 (58%) countries consisting of ∼5600 million inhabitants (76% of world's population in 2016). Population coverage was ≥90% in 14 countries, mostly in the Global North, 50-89% in 19 countries, 11-49% among 21 countries, and ≤10% in 14 countries including India, China, Russian Federation and Nigeria (40% of world's population). DISCUSSION: An enormous gap exists in THM regulatory status, routine monitoring practice, reporting and data availability among countries, especially between high- vs. low- and middle-income countries (LMICs). More efforts are warranted to regulate and systematically assess chemical quality of drinking water, centralize, harmonize, and openly report data, particularly in LMICs.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Trihalomethanes/analysis , Water Supply , Water Pollutants, Chemical/analysis , Disinfection
4.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558250

ABSTRACT

As cobalt (Co) has been the most useful element for activating Oxone to generate SO4•-, this study aims to develop a hierarchical catalyst with nanoscale functionality and macroscale convenience by decorating nanoscale Co-based oxides on macroscale supports. Specifically, a facile protocol is proposed by utilizing Cu mesh itself as a Cu source for fabricating CuCo2O4 on Cu mesh. By changing the dosages of the Co precursor and carbamide, various nanostructures of CuCo2O4 grown on a Cu mesh can be afforded, including nanoscale needles, flowers, and sheets. Even though the Cu mesh itself can be also transformed to a Cu-Oxide mesh, the growth of CuCo2O4 on the Cu mesh significantly improves its physical, chemical, and electrochemical properties, making these CuCo2O4@Cu meshes much more superior catalysts for activating Oxone to degrade the Azo toxicant, Acid Red 27. More interestingly, the flower-like CuCo2O4@Cu mesh exhibits a higher specific surface area and more superior electrochemical performance, enabling the flower-like CuCo2O4@Cu mesh to show the highest catalytic activity for Oxone activation to degrade Acid Red 27. The flower-like CuCo2O4@Cu mesh also exhibits a much lower Ea of Acid Red 27 degradation than the reported catalysts. These results demonstrate that CuCo2O4@Cu meshes are advantageous heterogeneous catalysts for Oxone activation, and especially, the flower-like CuCo2O4@Cu mesh appears as the most effective CuCo2O4@Cu mesh to eliminate the toxic Acid Red 27.

5.
J Environ Manage ; 324: 116367, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36183533

ABSTRACT

This research investigates the effects of landfill leachate effluent concentrations from moving bed biofilm reactor (MBBR) on stress-induced Chlorella vulgaris and Scenedesmus armatus lipid production and post-treatment micropollutant degradation. The effluent concentrations were varied between 25%, 50%, 75%, and 100% (v/v). The landfill leachate influent was treated using two-stage moving bed biofilm reactor under 24 h and 18 h hydraulic retention time (HRT). The results indicated that the effluent concentration was positively correlated with the stress-induced microalgae lipid production in the post-treatment of residual micropollutants. C. vulgaris and S. armatus completely remove residual micropollutants in the effluent. The superoxide dismutase and peroxidase activity were positively correlated with the cellular lipid content. The lipid content of C. vulgaris and S. armatus cultivated in the 18 h HRT effluent were 31-51% and 51-64%, while those in the 24 h HRT effluent were 15-16% and 5-19%. The optimal condition of microalgae cultivation for the post-treatment of residual micropollutants was 50-75% (v/v) effluent concentrations under 18 h HRT, achieving the highest lipid production of 113-116 mg/L for C. vulgaris and 74-75 mg/L for S. armatus. Essentially, the MBBR landfill leachate effluent holds promising potential as a substrate for microalgae lipid production.


Subject(s)
Chlorella vulgaris , Microalgae , Water Pollutants, Chemical , Chlorella vulgaris/metabolism , Water Pollutants, Chemical/analysis , Biofilms , Bioreactors , Lipids , Biomass
6.
Bioresour Technol ; 355: 127241, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35489571

ABSTRACT

This research investigates the use of propionate-cultured sludge to enhance methane (CH4) production and micropollutant biodegradation in biochemical methane potential (BMP) experiment treating landfill leachate. The experiments were carried out using non-acclimatized and acclimatized seed sludge with variable food to microorganism ratios of 1:1 and 1:2. Under the propionate-cultured sludge bioaugmentation, the concentrations of propionate-cultured sludge were varied between 10, 20, and 30 % (v/v). The acclimatized seed sludge exhibited high microbial abundance and diversity which promoted the CH4 production and micropollutant biodegradation. The modified Gompertz model indicated that the optimal condition was the acclimatized seed sludge with 30% (v/v) propionate-cultured sludge, achieving the lag time (λ), maximum CH4 production rate (Rmax), and maximum CH4 potential yield (Pmax) of 0.57 day, 17.35 NmL/h, and 140.58 NmL/g COD. The research novelty lies in the use of propionate-cultured sludge bioaugmentation in landfill leachate treatment to enhance CH4 production and micropollutant biodegradation.


Subject(s)
Sewage , Water Pollutants, Chemical , Anaerobiosis , Bioreactors , Methane/metabolism , Propionates , Sewage/chemistry , Water Pollutants, Chemical/analysis
7.
J Colloid Interface Sci ; 602: 95-104, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34118608

ABSTRACT

Metal Organic Frameworks (MOFs) represent a promising class of metallic catalysts for reduction of nitrogen-containing contaminants (NCCs), such as 4-nitrophenol (4-NP). Nevertheless, most researches involving MOFs for 4-NP reduction employ noble metals in the form of fine powders, making these powdered noble metal-based MOFs impractical and inconvenient for realistic applications. Thus, it would be critical to develop non-noble-metal MOFs which can be incorporated into macroscale and porous supports for convenient applications. Herein, the present study proposes to develop a composite material which combines advantageous features of macroscale/porous supports, and nanoscale functionality of MOFs. In particular, copper foam (CF) is selected as a macroscale porous medium, which is covered by nanoflower-structured CoO to increase surfaces for growing a cobaltic MOF, ZIF-67. The resultant composite comprises of CF covered by CoO nanoflowers decorated with ZIF-67 to form a hierarchical 3D-structured catalyst, enabling this ZIF-67@Cu foam (ZIF@CF) a promising catalyst for reducing 4-NP, and other NCCs. Thus, ZIF@CF can readily reduce 4-NP to 4-AP with a significantly lower Ea of 20 kJ/mol than reported values. ZIF@CF could be reused over 10 cycles and remain highly effective for 4-NP reduction. ZIF@CF also efficiently reduces other NCCs, such as 2-nitrophenol, 3-nitrophenol, methylene blue, and methyl orange. ZIF@CF can be adopted as catalytic filters to enable filtration-type reduction of NCCs by passing NCC solutions through ZIF@CF to promptly and conveniently reduce NCCs. The versatile and advantageous catalytic activity of ZIF@CF validates that ZIF@CF is a promising and practical heterogeneous catalyst for reductive treatments of NCCs.


Subject(s)
Metal-Organic Frameworks , Nitrogen , Catalysis , Cobalt , Metals
8.
Sci Total Environ ; 755(Pt 2): 142696, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33059146

ABSTRACT

The research aimed to remove antibiotic resistance by the simultaneous use of UV irradiation and chlorine (UV/chlorine). The inactivations of tetracycline resistant bacteria (TRB) during chlorination, UV irradiation, and UV/chlorine was investigated and compared with those of amoxicillin resistant bacteria (AmRB). Similar examination was also conducted for comparing the removals of their resistant genes (i.e., tetM and blaTem). The removals of antibiotic resistance highly depended on chlorine doses and UV intensities. The sufficient chlorine dose (20 mg.L-1) in the chlorination and the UV/chlorine completely inactivated TRB and AmRB (>7.3 log), while the UV irradiation could not achieve the complete disinfection. Microorganisms resistant to different antibiotics exhibit different susceptibility to the disinfection processes. The removals of antibiotic resistant genes (i.e., tetM and blaTem) were more difficult than those of TRB and AmRB. The UV/chlorine was the greatest process for tetM and blaTem removals, followed by chlorination and UV irradiation, respectively. Chlorination decreased the tetM and blaTem by 0.40-1.45 log and 1.04-2.45 log, respectively. The blaTem gene was highly reactive to chlorine, compared with tetM. The UV irradiation caused the tetM and blaTem reductions by 0.32-0.91 log and 0.59-0.96 log, respectively. The UV/chlorine improved the tetM and blaTem removals by 0.98-3.20 log and 1.28-3.36 log, respectively. The •OH contributed to the fraction of tetM and blaTem removals by 48% and 19%, respectively. The effect of reactive chlorine species on the tetM and blaTem removals was minor. The pseudo 1st-order kinetic constants (k') for tetM and blaTem removals by the UV/chlorine were highest. The •OH enhanced the k' values by 120% and 20% for the tetM and blaTem removals, respectively. The study showed the potential use of UV/chlorine for controlling antibiotic resistance.


Subject(s)
Chlorine , Water Purification , Anti-Bacterial Agents , Bacteria/genetics , Disinfection , Free Radicals , Halogenation , Ultraviolet Rays
9.
Chemosphere ; 263: 128332, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297261

ABSTRACT

This research comparatively investigates the biotoxicity of landfill leachate effluent from acclimatized and non-acclimatized sludge two-stage activated sludge (AS) systems. Both AS systems were operated with two leachate influent concentrations: moderate (condition 1) and elevated (condition 2). The biotoxicity of AS effluent of variable concentrations (10, 20, and 30% (v/v)) was assessed by the mortality rates of common carp (Cyprinus carpio) and glutathione-S-transferase (GST) enzyme activity. The treatment efficiency of the acclimatized sludge AS system for organic and inorganic compounds and nutrients (BOD, COD, TKN, NH4+, PO43-) were 75-96% under condition 1 and 79-93% under condition 2. The non-acclimatized sludge AS system achieved the treatment efficiency of 70-91% under condition 1 and 66-90% under condition 2. The acclimatized sludge AS system also achieved higher biodegradation of trace organic compounds, especially under condition 1. The effluent from acclimatized sludge AS system was less toxic to the common carp, as evidenced by lower mortality rates and higher GST activity. The findings revealed that the acclimatized sludge two-stage AS system could be deployed to effectively treat landfill leachate with moderate concentrations of compounds and trace organic contaminants. The acclimatized sludge AS is an efficient wastewater treatment solution for developing countries with limited technological and financial resources.


Subject(s)
Carps , Water Pollutants, Chemical , Animals , Antioxidants , Bioreactors , Sewage , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
10.
Water Sci Technol ; 79(5): 929-937, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31025972

ABSTRACT

This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during ultraviolet (UV) photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 min, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L-1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L-1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.


Subject(s)
Disinfectants/chemistry , Humic Substances/analysis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Chlorine , Disinfection , Photolysis , Trihalomethanes , Water Pollutants, Chemical/analysis
11.
Water Environ Res ; 91(8): 722-730, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30849204

ABSTRACT

This work aimed to enhance the photocatalytic degradation of methyl orange (MO) by crystallinity transformation of titanium dioxide (TiO2 ). In addition, the kinetic degradation of MO was determined. To transform its crystallinity, TiO2 was synthesized using a sol-gel method and calcined at between 200°C to 600°C. Calcination at a temperature of 250°C resulted in TiO2 that showed the best performance, corresponding to MO removal of 87% ± 7%. MO removal by TiO2 calcined between 250°C to 400°C was higher than for commercial TiO2 powder (Sigma-aldrich) (62% ± 4%). TiO2 with a small crystallite size and high anatase fraction enhanced the photocatalytic degradation of MO, while the specific surface area and surface roughness seemed to play a minor role. The photocatalytic degradation of MO was NaCl-independent, while the photocatalytic activity increased with decreased pH. Reused TiO2 showed similar photocatalytic degradation of MO compared with pristine TiO2 , at 84 ± 2%. The oxidation kinetics of TiO2  calcined at 250°C were fitted to the Langmuir-Hinshelwood model (R2  = 0.9134). The kr and Ks values were 0.027 mg L-1  min-1  and 0.621 L/mg, respectively. Crystallinity transformation was a major factor in the enhancement of photocatalytic degradation of MO. PRACTITIONER POINTS: Photocatalytic activity of TiO2 depends on calcination temperature, pH, and a number of UVC lamps. TiO2 with a small crystallite size and high anatase fraction enhanced the photocatalytic degradation of MO.


Subject(s)
Azo Compounds/chemistry , Photolysis , Titanium/chemistry , Water Purification , Crystallization , Kinetics , Temperature
12.
Environ Technol ; 40(2): 163-170, 2019 Jan.
Article in English | MEDLINE | ID: mdl-28933248

ABSTRACT

Occurrence of estrone (E1) and 17ß-estradiol (E2) in the environment has attracted the public attention since E1 and E2 cause estrogenicity in aquatic microorganisms. Microalgae cultivation in wastewater is considered as an economical practice since microalgae can be used for not only pollutant removals, but also as energy resources. This research aims to investigate the removals of E1 and E2 in synthetic wastewater by microalgae (i.e. Chlorella vulgaris and Scenedesmus obliquus). At the steady state, S. obliquus removed E1 and E2 by 91% and 99%, respectively. C. vulgaris removed E1 and E2 by 52% and 99%, respectively. Interestingly, the occurrence of E1 was observed when E2 was degraded by microalgae. The predominant mechanism for E1 and E2 removals was biodegradation, followed by adsorption. The adsorption kinetic and isotherm for both E1 and E2 can be described by the pseudo-second-order and Freundlich model. The addition of E1 and E2 resulted in a higher lipid content of microalgae by 1-9%.


Subject(s)
Chlorella vulgaris , Microalgae , Water Pollutants, Chemical , Estradiol , Estrone , Kinetics
13.
Water Sci Technol ; 2017(2): 404-411, 2018 May.
Article in English | MEDLINE | ID: mdl-29851392

ABSTRACT

The study aims to simultaneously control micropollutants and bromate formations by using ozonation and peroxone process. The batch experiments were run with variations in specific ozone dose (SOD) and hydrogen peroxide-to-ozone (H2O2/O3) ratio. Based on the removal by ozonation and peroxone, micropollutants were categorized into three groups: non-reactive compounds (i.e. amidotrizoate), moderately reactive compounds (i.e. metoprolol, acesulfame potassium, bezafibrate, and benzotriazole), and highly reactive compounds (i.e. carbamazepine and diclofenac). For ozonation and peroxone process, the removals for highly reactive compounds and moderately reactive compounds were 82-99% and 29-99%, respectively. The removal of amidotrizoate was not observed in this study. The effect of ozonation on micropollutant removals was similar to the peroxone process. However, differences in bromate formation were observed. Bromate formation depended on the SOD, while addition of hydrogen peroxide suppressed the bromate formation. The peroxone process at the H2O2/O3 ratio of 0.3 was recommended to bromide-containing water below 100 µg·L-1 for simultaneous control of micropollutants and bromate. Enhancement in micropollutant removals, except for the non-reactive groups, was achieved with either higher SOD or the addition of hydrogen peroxide to ozonation. The micropollutant removal predicted from the second-order kinetic reaction with ozone and •OH exposures was higher than the observed data.


Subject(s)
Bromates/chemistry , Ozone/chemistry , Sulfuric Acids/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Kinetics , Wastewater/analysis
14.
Chemosphere ; 184: 1215-1222, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28672704

ABSTRACT

The objective of this study was to remove regulated DBP precursors by using ozonation and peroxone process (H2O2/O3). Regarding formation potentials of trihalomethanes (THMs) and haloacetic acids (HAAs), the role of chloride in chlorination and ozonation/peroxone processes was revealed. The organic compounds in water samples from rapid sand filtration preferably yielded the THM formation potentials, rather than HAAs. Ozonation with the typical applied doses (1-5 mg L-1) was ineffective for removals of THM and HAA precursors. The peroxone process only decreased the formation potentials of THMs. The reduction of THMs by the peroxone process resulted from decreases in either chloroform or dibromochloromethane. However, the limitation was found in the H2O2/O3 ratios of 2.0-3.0. The removals of HAA precursors were much more difficult than that of THM precursors by ozonation and peroxone processes. The oxidation of organic compounds was able to promote the HAA formations. Ozonation with the typical ozone doses increased the chloroform formations, while decreases in bromide-containing THMs occurred. Effect of ozonation on changes in HAAs speciation was unclear. The peroxone process likely promoted the dichloroacetic acids and trichloroacetic acids. The presence of chloride (1-5 g L-1) highly enhanced the THM and HAA formation potentials. NaCl addition greatly increased the bromide-containing THMs, while the chloroform decreased. For HAAs, the presence of chloride promoted the bromide-containing HAAs and monochloroacetic acids. The presence of chloride played a role as a promotor for strong chlorinating agents in chlorination, rather than as a scavenger in ozonation and peroxone processes.


Subject(s)
Disinfectants/analysis , Halogenation , Ozone/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Acetates , Bromides , Chlorides , Disinfectants/chemistry , Disinfection/methods , Filtration , Hydrogen Peroxide/chemistry , Trihalomethanes , Water Pollutants, Chemical/chemistry
15.
Chemosphere ; 176: 25-31, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28254711

ABSTRACT

The objective of the study is to evaluate the performance of conventional treatment process (i.e., coagulation, flocculation, sedimentation and sand filtration) on the removals of haloacetonitrile (HAN) precursors. In addition, the removals of HAN precursors by photo-based advanced oxidation processes (Photo-AOPs) (i.e., UV/H2O2, UV/O3, and UV/H2O2/O3) are investigated. The conventional treatment process was ineffective to remove HAN precursors. Among Photo-AOPs, the UV/H2O2/O3 was the most effective process for removing HAN precursors, followed by UV/H2O2, and UV/O3, respectively. For 20min contact time, the UV/H2O2/O3, UV/H2O2, and UV/O3 suppressed the HAN formations by 54, 42, and 27% reduction. Increasing ozone doses from 1 to 5 mgL-1 in UV/O3 systems slightly improved the removals of HAN precursors. Changes in pH (6-8) were unaffected most of processes (i.e., UV, UV/H2O2, and UV/H2O2/O3), except for the UV/O3 system that its efficiency was low in the weak acid condition. The pseudo first-order kinetic constant for removals of dichloroacetonitrile precursors (k'DCANFP) by the UV/H2O2/O3, UV/H2O2 and standalone UV systems were 1.4-2.8 orders magnitude higher than the UV/O3 process. The kinetic degradation of dissolved organic nitrogen (DON) tended to be higher than the k'DCANFP value. This study firstly differentiates the kinetic degradation between DON and HAN precursors.


Subject(s)
Acetonitriles/analysis , Hydrogen Peroxide/chemistry , Ozone/chemistry , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Purification/methods , Acetonitriles/radiation effects , Disinfection , Flocculation , Kinetics , Oxidation-Reduction , Water Pollutants, Chemical/radiation effects
16.
J Colloid Interface Sci ; 478: 97-106, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27288575

ABSTRACT

To demulsify oil-in-water (O/W) emulsions, a zinc-based zeolitic imidazolate framework (ZIF-8) was employed for the first time to remove oil droplets from water. ZIF-8 exhibits a high surface area and positive surface charges, making it a suitable adsorbent to adsorb negatively-charged oil droplets. Adsorption behaviors of oil droplets to ZIF-8 were studied by analyzing the adsorption kinetics and isotherm with theoretical models. The activation energy of adsorption of oil droplets to ZIF-8 was determined as 24.1kJmol(-1). The Langmuir-Freundlich (L-F) model was found to be most applicable to interpret the isotherm data and the predicated maximum adsorption capacity of ZIF-8 can reach 6633mgg(-1), revealing a promising capability of ZIF-8 for demulsification. Factors influencing the adsorption of oil droplets to ZIF-8 were investigated including temperature, pH, salt and surfactants. The adsorption capacity of ZIF-8 for oil was improved at elevated temperatures, whereas alkaline condition was unfavorable for the adsorption of oil droplets due to the electrostatic repulsion at high pH. The adsorption capacity of ZIF-8 remained similar in the presence of NaCl but it was reduced in the presence of surfactants. ZIF-8 was regenerated by a simple ethanol-washing method; the regenerated ZIF-8 exhibited more than 85% of regeneration efficiency over six cycles. Its crystalline structure also remained intact after the regeneration. These characteristics indicate that ZIF-8 can be a promising and effective adsorbent to remove oil droplets for demulsification of O/W emulsions.

17.
Water Res ; 88: 836-843, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26610193

ABSTRACT

To identify the primary fraction of dissolved organic matter (DOM) responsible for chlorinous odor, waters treated by the conventional treatment (i.e., coagulation, flocculation, sedimentation and rapid sand filtration (RSF)) and ozonation were characterized by a fractionation technique prior to chlorination. Furthermore, chlorinous odor strengths originated from organic fractions were compared with that resulted from trichloramine (NCl3). Odor strengths and trichloramine concentrations were determined by the triangle sensory test and head space-GC/MS, respectively. The major DOM fraction for outlet water of RSF was hydrophobic acid (HoA), whereas the hydrophilic acid (HiA) fraction was dominant in the ozonated water. For a fixed DOC level (1 mgC/L), the base (Bas) or hydrophilic base (HiB) fraction was found to be the major organic precursor of chlorinous odor for the effluent of RSF. Even the mass percentages of DOM fractions in RSF water were considered, Bas was the major DOM fractions responsible for chlorinous odor. For ozonated water, two major precursors of chlorinous odor were HiA and hydrophilic neutral (HiN) fractions. Furthermore, the influence of trichloramine on chlorinous odor intensity for ozonated water should not be negligible. Under variation of seasonal organic contents, changes in precursors of chlorinous odor were observed.


Subject(s)
Inorganic Chemicals/analysis , Odorants/analysis , Organic Chemicals/analysis , Water Purification/methods , Chemical Fractionation , Chlorine Compounds/analysis , Halogenation , Humic Substances/analysis , Ozone/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...